Published in March 2016

Authors: Catherine Ryan and Paul Elsner


Drylands are home to more than two billion people and are characterised by frequent, severe droughts. Such extreme events are expected to be exacerbated in the near future by climate change.

NDVIA potentially simple and cost-effective mitigation measure against drought periods is sand dams. This little-known technology aims to promote subsoil rainwater storage to support dryland agroecosystems. To date, there is little long-term empirical analysis that tests the effectiveness of this approach during droughts.

This study addresses this shortcoming by utilising multi-year satellite imagery to monitor the effect of droughts at sand dam locations. A time series of satellite images was analysed to compare vegetation at sand dam sites and control sites over selected periods of drought, using the normalised difference vegetation index.

The results show that vegetation biomass was consistently and significantly higher at sand dam sites during periods of extended droughts. It is also shown that vegetation at sand dam sites recovers more quickly from drought.

The observed findings corroborate modelling-based research which identified related impacts on groundwater, land cover, and socio-economic indicators.

Using past periods of drought as an analogue to future climate change conditions, this study indicates that sand dams have potential to increase adaptive capacity and resilience to climate change in drylands.

It therefore can be concluded that sand dams enhance the resilience of marginal environments and increase the adaptive capacity of drylands. Sand dams can therefore be a promising adaptation response to the impacts of future climate change on drylands.

Click here to read the full paper